

Published on Web 10/13/2004

3,3,3-Trichloropropyl-1-triphenylphosphorane: A Reagent for the Synthesis of (*Z*)-1,3-Enynes, (*Z*,*Z*)-1-Chloro-1,3-dienes, and 1,3-Diynes[†]

Maheswaran S. Karatholuvhu and Philip L. Fuchs*

Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907

Received August 13, 2004; E-mail: pfuchs@purdue.edu

Conjugated π -systems, including (Z)-1,3-enynes, (Z,Z)-1,3dienes, and 1,3-diynes, such as those found in histrionicotoxin **2**,¹ leustroduscin H **3**,² and the dialula diyne **4**,³ are features which may be advantageously employed as connective segments in synthesis (Figure 1).

Figure 1. 3,3,3-Trichloropropyl-1-triphenylphosphorane and natural product targets.

Natural products containing the 1,3-diyne moiety are fairly common and have been synthesized by S_N2 reactions with acetylene followed by organocopper or palladium-mediated coupling (Scheme 1). An alternative introduction of the initial alkyne involves conversion of an aldehyde **5** to acetylene **6** using a variety of one-carbon reagents.⁴ Typically, the second acetylene is used in excess, and TMS–acetylene offers the advantage that the product can often be selectively semihydrogenated at the less-hindered alkyne⁵ to generate a protected (*Z*)-1,3-enyne (**8Z**), suitable for subsequent coupling operations after silyl deprotection to **9Z** (Scheme 1). In cases where several acetylenic functions reside in the target molecule, the semihydrogenation approach may not be a realistic option.

Scheme 1

In such cases, an alternative approach to the (Z)-1,3-enyne, **8Z**, is required. While Wittig reagents, such as **10**, provide excellent

[†] Conjunctive reagents for the Chiral Carbon Catalog 2 (for 1, see: Li, X.; Lantrip, D.; Fuchs, P. L. J. Am. Chem. Soc. **2003**, *125*, 14262–14263).

yields of the (*E*)-1,3-enyne, **8E**, Peterson reactions with bis-silylated propynylic anions, **11a**,**b**, represent the current state-of-the-art generation of **8Z** with a three-carbon reagent. Alternatively, a stepwise approach is often employed for construction of olefins **12a**–**d** and followed by palladium-catalyzed coupling with **13** to generate (*Z*)-1,3-enyne, **8Z** (Scheme 1).

We reasoned that a reagent where the acetylene moiety was present in latent form at the time of the Wittig reaction should favor formation of the (*Z*)-olefin. Acetylene **6** is available from 1,1-dibromoolefin **14**, prepared from aldehyde **5** and ylide **13**.⁶ Moreover, a group at DuPont has developed a beautiful and economical one-carbon protocol, adding a trichloromethyl anion to aldehyde **5** followed by transmetalation of adduct **17** to acetylene **6** (Scheme 2).⁷

Scheme 2

Our current study melded both of the above reactions. Stirring a mixture of 1.5 equiv of 16 and 16' at 25 °C with the Schweizer vinylphosphonium salt (20-Br)⁸ in acetonitrile delivers a 95% yield of pure 1-Br. A more economical synthesis of vinylphosphonium chloride (20-Cl) involves the heating of 2-chloroethanol (21) with a slight excess of triphenylphosphine neat for 48 h at 100 °C to afford β -hydroxyethyl phosphonium chloride (22).⁹

Scheme 3

Dehydration of **22** was best accomplished by heating the mixture with oxalyl chloride until gas evolution had ceased.¹⁰ Purification delivered **20-Cl** in 95% overall yield. Conversion of **20-Cl** to **1-Cl** was equivalent to the formation of the more expensive **1-Br** (Scheme 3), without requiring purification for any of the intermediate steps.

Scheme 4

10.1021/ja045112v CCC: \$27.50 © 2004 American Chemical Society

Table 1. Reactions of Reagent 1-CI

	RCHO 5	R 23	·CCl ₃	R		R 25 ONE PC	с	26 27 29
	R=	Yield(%)	Z/E ^a	Yield(%	%) Z/E ^a	Yield(%	b) Z/E ^a	Yield(%)
5a	Ph-	80	95/5	>95	95/5	90	93/7	26a 80 , 29a 60 27a ₁ X=Me 65 27a ₂ X=PhCHOH 78 27a ₃ X=SiMe ₃ 60
5b	4-Cl-Ph-	85	92/8	94	92/8	95	92/8	27b X=H 63
5c	2-Br-Ph-	83	55/45	98	55/45	79	50/50	
5d	o-Phthaldehyde	85	93/7	98	93/7	79	90/10	
5e	3-MeO-Ph-	77	97/3	96	97/3	75	96/4	
		(94 borsm))			(92 borsm)		
5f	4-MeO-3-AcO-Ph-	66	90/10	99	90/10	75°	90/10	
5g	Ph-CH ₂ -CH ₂ -	64	Z only	95	Z only	83	Z only	
5h	$\langle \rangle$	69	Z only	95	Z only	79	Z only	
		46 ^b	95/5	95	95/5	43 [▶]	Z only	
5 i		(76 borsm))			(73 bors	sm)	
5j	PhCH ₂ O(CH ₂) ₃ CH ₂	50	Z only	99	Z only	28	Z only	
•	-	(75 borsm))		·	(78 bors	sm)	
5k	TBS-	72 ^f	92/8	96	92/8	35 ^{b,c}	92/8	
	Me Me					(42 bors	sm)	
51	y we want	63	Z only	97	Z only	78 ^d	Z only	261 89
5m	OTBDPS (dl)	72	Z only	97	Z only	62	Z only	26m 82 ^g

^a Z/E ratio for trichloroethylenes and chloroenynes are from ¹H NMR; however, for dichlorodienes, the Z/E ratio is reported based on the Z/E ratio of trichloroethylenes. Most dichloro compounds show poor separation of isomers in NMR solvents, such as CDCl₃, C₆D₆, and CD₃OD. ^b LHMDS was used instead of NaHMDS. ^c Yield corresponds to the transformation from 24k; see the Supporting Information. ^d Single enantiomer from chiral HPLC. ^e Acetate hydrolyzed to methoxyphenol. ^f Yield is for the two steps starting from the corresponding propargyl alcohol. ^g See the Supporting Information.

Scheme 5

Metalation of 1-Cl in toluene (-78 °C) followed by the addition of aldehyde gives Wittig adduct 23 or chloro (Z)-1,3-envne 25 when the reaction is conducted in THF using excess sodium hexamethyldisilazane (NaHMDS). Application of the Cr[II] vinylidene carbenoid method of Falck and Mioskowski¹¹ to (Z)-olefin 23 gives the (Z,Z)-chlorodiene 26 in 80% yield. Alternatively, treatment of 23 with DBU in dichloromethane gives (Z)-dichlorodiene 24 (Scheme 4).

Transmetalation of 25 to lithioacetylide 27 (X = Li), followed by conversion to functionalized (Z)-1,3-envnes (27), was effected by trapping with a variety of electrophiles (Table 1, last column). Potassium tert-butoxide presumably effects bis-elimination of 25 to 1,3-divne 29 via the cumulene intermediate 28^{12} (Scheme 5).

Acknowledgment. Thanks are due to Dr. Douglas Lantrip for assistance in manuscript preparation.

Supporting Information Available: Additional experiments, discussion, experimental procedures, and ¹H and ¹³C spectra. This material is available free of charge via the Internet at http://pubs.acs.org.

References

- (1) Kotera, M. Bull. Soc. Chim. Fr. 1989, 370-397. (b) Davidson, E. C.; Fox, M. E.; Holmes, A. B.; Roughley, S. D.; Smith, C. J.; Williams, G.
 M.; Davies, J. E.; Raithby, P. R.; Adams, J. P.; Forbes, I. T.; Press, N. J.;
 Thompson, M. J. J. Chem. Soc., Perkin Trans. 1 2002, 1494–1514. (c) Stockman, R. A. Tetrahedron Lett. 2000, 41, 9163-9165.
- (2) Shimada, K.; Kaburagi, Y.; Fukuyama, T. J. Am. Chem. Soc. 2003, 125, 4048–4049. (b) Buck, S. B.; Hardouin, C.; Ichikawa, S.; Soenen, D. R.; Gauss, C. M.; Hwang, I.; Swingle, M. R.; Bonness, K. M.; Honkanen, R. E.; Boger, D. L. J. Am. Chem. Soc. 2003, 125, 15694-15695.
- (3) Walker, R. P.; Faulkner, D. J. J. Org. Chem. 1981, 46, 1475-1478. (b) de Jesus, R. P.; Faulkner, D. J. J. Nat. Prod. 2003, 66, 671-674.
- (4) Muller, S.; Liepold, B.; Roth, G. J.; Bestmann, H. J. Synlett 1996, 521-522 and references therein.
- (5) Aerssens, M. H. P. J.; Brandsma, L. Chem. Commun. 1984, 735–736.
 (6) Corey, E. J.; Fuchs, P. L. Tetrahedron Lett. 1972, 3769–3772.
- (7)
- Wang, Z.; Campagna, S.; Yang, K.; Xu, G.; Pierce, M. E.; Fortunak, J. M.; Confalone, P. N. *J. Org. Chem.* **2000**, *65*, 1889–1891. Schweizer, E. E.; Bach, R. D. J. Org. Chem. 1964, 29, 1746-1751. (b)
- Schweizer, E. E.; Smucker, L. D.; Votral, R. J. J. Org. Chem. 1966, 31, 467 - 471.
- (9) Seyferth, D.; Fogel, J. J. Organomet. Chem. 1966, 6, 205-227. For a modification of this procedure, see Supporting Information
- (10) Okuma, K.; Ono, M.; Ohta, H. Bull. Chem. Soc. Jpn. 1993, 66, 1308-1311.
- (11) Baati, R.; Barma, D. K.; Falck, J. R.; Mioskowski, C. J. Am. Chem. Soc. 2001, 123, 9196-9197.
- (12) Negishi, E.; Okukado, N.; Lovich, S. F.; Luo, F.-T. J. Org. Chem. 1984, 49, 2629-2632. (b) Kende, A. S.; Smith, C. A. J. Org. Chem. 1988, 53, 2655-2657. (c) Yadav, J. S.; Maiti, A. Tetrahedron Lett. 2001, 42, 3909-3912.

JA045112V